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Transport in two-dimensional scattering stochastic media: Simulations and models
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Classical transport of neutral particles in a purely scattering two-dimensional stochastic media is studied.
Results of numerical Monte Carlo simulations of transport in two-dimensional stationary, binary, purely scat-
tering stochastic media with Markovian mixing statistics are reported. Partial Markovian descriptions are
proposed as models for the transport process inside the stochastic media. In these models, the composition of
the media is correlated on a finite length scale. The results obtained from the models are in good agreement
with the results obtained from the two-dimensional simulations.

PACS number~s!: 05.60.Cd, 02.50.Ga, 02.70.Lq, 28.41.Qb
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I. INTRODUCTION

A considerable amount of research dealt with class
transport of neutral particles and radiation in stochastic m
dia @1–12#. The applications of this research are many, a
include neutron transport in boiling water reactors,g-ray and
neutron flow through concrete shields, transport through m
lecular clouds and stellar atmospheres and radiative tran
in Rayleigh-Taylor unstable inertially confined fusion pe
lets.

In the current work we discuss time-independent mono
ergetic transport, in a nonabsorbing stochastic media
does not contain internal particle sources. The trans
equation for this process is written~based on the notation o
neutron transport theory! @1#

VW •¹W c~rW,VW !1ssc~rW,VW !5E ss~V8→VW !c~rW,VW 8!dVW 8.

~1!

c(rW,VW ) is the angular flux, withrW andVW denoting the spatia
and angular variables respectively.ss and ss(VW 8→VW ) are
the total and differential macroscopic scattering cross s
tions, respectively.

The binary stochastic media examined is composed
grains of random size, shape, and placement, each filled
one of two materials. It is assumed that the cross section
the constituent materials are known, but the information
garding the media’s inner structure is known only in a s
tistical sense.

The heterogeneity of a media affects its transport prop
ties. In a multidimensional scattering stochastic media, p
ticles can bypass obstacles~opaque material grains! found
along their path. This effect depends in general not only
the properties of the materials of the media, but also on
topology, which defines the possible particle paths. The
fect of the heterogeneity thus differs between the vari
realizations of a stochastic medium. The study of transpo
stochastic media deals with the average effect of heterog
ity over all possible realizations of the media, and with
fluctuations.
PRE 611063-651X/2000/61~6!/6183~7!/$15.00
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The transport equation is too complicated to be solv
analytically, even when the inner structure of the medium
known. An estimate of the averaged transmission throug
stochastic media can be obtained either using numer
simulations or using simplified models of the transport p
cess.

Numerical results of transport simulations in stochas
media were reported for one-dimensional~1D! rod geometry
@2,3#, for layered planar geometry@3,4#, and for media with
cubic-shaped grains@5#. The results of the simulation
showed that the transmission through stochastic multidim
sional media is generally higher then the transmiss
through the equivalent homogenized~atomic-mixed! media
@5#.

Two simplified descriptions are widely used for the effe
tive modeling of the transport process. The first is the
approach, where particles are restricted to move alon
straight line, a feature that simplifies the mathematical co
plexity of the problem. When the materials in the media a
both purely absorbing, or are both purely scattering, or th
both have the same albedo, the transmission through e
realization can be derived analytically, and the problem
reduced to that of averaging the nonlinear transmission fu
tion over the different realizations. Rigorous solutions for t
1D averaged transmission in stochastic media were found
purely absorbing@6–8# and purely scattering@9,10# media.
These solutions were used to derive effective cross sect
for the stochastic media. However, by restricting the tra
port to a straight path, the obstacle bypassing phenomeno
discarded. The 1D approach is thus limited to such proble
where obstacle bypassing is not important.~This is the case,
for example, in transport problems where the scattering
forward peaked, or when scattering is negligible. This is a
the case in a layered planar geometry.!

In the second widely used model, the transport proces
a given realization is taken to be a Markovian process, wh
evolution depends only on its present state, and not on
past states@5,7,11#. Although transport in a heterogeneou
medium is generally not a Markovian process, since the
tances to material interfaces generally depend on the
trajectory, it has been suggested that the use of the Mark
ian assumption can produce a useful and simple mode
6183 ©2000 The American Physical Society
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6184 PRE 61O. HARAN, D. SHVARTS, AND R. THIEBERGER
particle transport in stochastic media. The Markovian
sumption implies that the compositions of different segme
along the particle’s path are not correlated. This overemp
sizes the obstacle bypassing effect, since obstacles ‘‘di
pear’’ from the path at each collision. Thus the Markovi
description is also limited to problems where obstacle
passing is not important.

In the current article we present results of Monte Ca
transport simulations in purely scattering, two-dimension
stochastic media with Markovian mixing statistics. Obsta
bypassing is an important feature in this problem, since th
is a considerable amount of backscattering, and the trans
range of the particles is not limited by an absorption mec
nism.

A phenomenological model is proposed for the adequ
modeling of obstacle bypassing in a 2D stochastic medi
The transport process in this model is partially Markovian,
the particle’s trajectories are assumed to be partially co
lated. A somewhat similar description for the transport p
cess, containing partial path correlation, has been propo
earlier@13# as an efficient algorithm for transport in stocha
tic media. The results obtained from our partially Markovi
model are found to be in good agreement with the result
the 2D simulations. The model results are also consis
with exact analytical results and approximate models
tained in the continuum limit for the effective properties
random media, including heat and electrical conductiv
magnetic permeability, and elasticity@16–21#. The model is
thus an extension of the continuum results to problems wh
the geometrical length scale is comparable to the mean
path.

In Sec. II of this paper, the 2D media and the numeri
simulations are described. In Sec. III, the partially Marko
ian model is formulated and tested.

II. SIMULATIONS OF TRANSPORT
IN 2D STOCHASTIC MEDIA

The current work deals with 2D stochastic media co
posed of grains of random size, shape, and placement,
filled with one of two materials. Both materials are pure
scattering, with cross sections denoted bys0 and s1 . The
averaged volume fractions of these materials arep0 and p1
(512p0), respectively. Due to the statistical nature of t
stochastic media, the filling fractions deviate from the av
aged fraction in a finite realization.

The mixing of the two materials is usually described u
ing probability distribution functions for the material se
ment lengths—f i( l ,VW ,xW )—which define the probability tha
a segment of materiali at space pointxW and in the direction
VW will be of length l. In the current work we examine ho
mogeneous, isotropic Markovian mixing statistics, for whi
f i( l ,VW ,xW ) is

f i~ l ,VW ,xW !5 f i~ l !5
1

l i
e21/l i, ~2!

l i being the average string length in materiali. Markovian
mixing statistics have the special property that the distanc
the right~left! interface from any point inside the segment
independent of its distance from the left~right! interface.
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The stochastic 2D realizations were constructed accord
to a procedure described by Switzer@14#: We sampledn
lines with random distances from the center of the realizat
and with random directions. These lines divide the reali
tion into convex polygonal cells. The string length distrib
tion of these cells is Markovian and isotropic, with an ave
age string lengthlC , that is inversely proportional to the
number of lines. The material occupying each cell w
sampled randomly according to the volume fractionsp. Since
adjacent cells can be filled with the same material, the av
aged string length in a grain of materiali is,

l i5lC1pilC1pi
2lC1pi

3lC1¯5
lC

12pi
. ~3!

A typical random realization constructed in this way
shown in Fig. 1.

The problem investigated in this paper is the longitudin
transmission through the medium, and its consequent c
acterization with an effective cross section. A Monte Ca
based transport code was used to generate ensembles o
dom rectangular realizations~for various stochastic media!,
whose depth and width were approximately 100l i . A source
of particles, emerging parallel to thex̂ axis, was set at the lef
boundary of the media. Reflecting boundary conditions w
applied at the transverse boundaries of the rectangle rea
tions. The calculation of each particle’s path was done us
Monte Carlo techniques, meaning that the distances betw
scattering interactions and the outcome directions were
domly sampled for each segment of the path. The part
history ended when the particle exited through the left
right faces of the medium. A typical particle path passi
through a stochastic realization is also shown in Fig. 1.

The designated Monte Carlo code was used to calcu
TS,2D(L)—the average transmission through an ensemble
random realizations—by counting the relative number
particles reaching depthL from the left face of the media
The averaged transmissionTS,2D(L) was then compared with
the transmission through a 2D homogenized med
TH,2D(s,L), and an effective 2D scattering cross section
the stochastic media was derived accordingly:

FIG. 1. A typical random realization of a 2D binary stochas
media with Markovian mixing statistics and a typical Monte Ca
path of a particle that passed through the medium.
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seff,2D~L !5
TH,2D

21 ~TS,2D!

L
. ~4!

Equation~4! implies that the transmission through a hom
geneous medium with a scattering cross-section ofseff,2D(L)
is equal to the average transmission through the random
alizations of the stochastic medium.

Two sample problems are studied. In both problems
stochastic medium has equal material volume fractionsp0
5p150.5) and the cross sections ares0520/11 cm21 and
s152/11 cm21 for the opaque and transparent material,
spectively. In problem A,lC51 cm, while in problem B
lC530 cm. ~The units are actually arbitrary, since the pro
lem is scale invariant as long as the dimensionless par
etersls and L/l are fixed.! The averaged~homogenized!
cross sections̄5p0s01p1s1 is equal to 1.0 for both prob
lems. These problems were chosen since they correspon
different values of the important dimensionless parame
lCs̄. The dependence of the results on other dimension
parameters, such as the contrasts0 /s1 and the volume frac-
tions (p0 ,p1), will be discussed later.

Figure 2 shows the normalized effective 2D cross secti
seff,2D(L)/s̄ for the sample problems, as a function of t
depth. Each problem’s results are based on the calculatio
more than 2.5 million particle histories inside a total
50 000 2D realizations of the media. Effective cross secti
obtained from models discussed in Sec. III are also plot
In thin media,seff,2D(L) approachess̄. However, in thick
media, the effective cross section is substantially lower~by
more than 20% and 40% for the two sample problems,
spectively!, implying higher transmission.

Section II deals with models from which the results
Fig. 2 can be reproduced. It will be shown that the ability
bypass obstacles is the cause of the increase in the tran
sion through thick media.

III. ‘‘PARTIAL MARKOVIAN’’ MODELS

As mentioned earlier, the two most widely used simpl
cations of the transport process in stochastic media are
1D and Markovian approaches. A significant difference
tween the two is that, in the 1D description, prescattering
post-scattering distributions of the material segments len
along the particle path are fully correlated, while in the Ma
kovian process there is no correlation between them.

By examining the path of a particle in a 2D scatteri
random medium~Fig. 1!, it can be seen that as the particle
direction is changed by a scattering interaction; the mate
segment lengths along the new direction are only parti
different from those along the previous one.

We are thus led to propose an approximation for the
tual 2D process, based on a ‘‘partial Markovian’’ process.
such a process, prescattering and post-scattering seg
length distributions are only partially correlated. There a
many possible correlation forms. In the present work we
amined a process in which, at each collision, either the c
position of the media remains the same~total path correla-
tion!, or it changes randomly~zero path correlation!.

The model was investigated using 1D Monte Carlo sim
lations, where the probability of the media’s compositi
remaining the same after a scattering interaction wasM ~de-
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noted hereafter as the ‘‘memory’’!. In a no-memory interac-
tion, occurring with a probability of 12M , all path informa-
tion was lost, including the boundaries of the segment
which the interaction took place, and a new random reali
tion was created around the particle. Such a process is i
trated in Fig. 3, where scattering interactions colored in bla
describe no-memory interactions. This process in an inter
lation between the 1D approach (M51) and a Markovian
process restricted along a line (M50).

Figure 2 presents effective cross sections of a partial M
kovian scattering stochastic media, with different ‘‘parti
memories’’ M ~0, 0.25, 0.5, 0.75, and 1.0!, as obtained for
the sample problems. For problem B the lineM50.997 was
added. The effective cross section increases with the mem
~with the path correlation!. The asymptotic~thick-media! ef-
fective cross sections of a partial Markovian process is low
than the averaged cross section, but higher than the Mar
ian one.

We note that a different Monte Carlo algorithm, with pa

FIG. 2. The effective cross-section of the 2D stochastic mediu
seff,2D(L), vs the medium depth~with 2s error bars!, along with the
results obtained from Monte Carlo simulations of partial Markovi
transport processes with different values of the memoryM. Among
the partial Markovian results plotted are the results of the 1D
proach and the results of the Markovian model.
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6186 PRE 61O. HARAN, D. SHVARTS, AND R. THIEBERGER
tial path memory, was independently proposed as an effic
technique for approximating transport in stochastic me
@16#. This algorithm retained memory of the distance b
tween a particle’s location and the boundaries of the s
rounding material grain. Results obtained from this alg
rithm are similar to the ones shown in Fig. 2.

Next, we derive a method for the prediction of the val
of M adequate for a specific 2D stochastic medium. T
distance over which the path composition is correlated~‘‘the
correlation length’’! in the partial Markovian description de
pends onM. WhenM50, it is simply the distance betwee
consequent collisions, denoted byD. When M is close to
unity, the correlation length can be estimated using sim
diffusion ~random walk! analysis: the path memory is los
after NC51/(12M ) collisions on the average. The distan
from the origin of this walk at which the loss of memo
occurs is approximately

Lcor~M !5DANc5D/A12M . ~5!

Since Eq.~5! also reproduces theM50 limit, we use it as a
model for the correlation length for allM.

In a real 2D stochastic realization, the physical leng
scale over which the composition changes islC . However,
for very small grains, the path composition changes ev
collision (Lcor'D). We thus propose the following simpl
formula as a model for the correlation length:

Lcor'D1lC . ~6!

By equating the correlation lengths in Eqs.~5! and ~6!, and
by associatingD with the inverse of the effective cross se
tion, D51/seff , for the partial memoryM of a 2D media, we
obtain

M512
1

~11sefflC!2 . ~7!

Sinceseff is not known, the appropriate partial memoryM in
Eq. ~7! is also unknown. Both can be derived iteratively
simulating several partial Markovian processes, each with
improved approximation forseff and M ~starting with the
initial guessseff5s̄).

FIG. 3. A schematic description of a partial Markovian transp
process in a 2D stochastic media. The transport begins in a
random realization. At each scattering interaction, either the par
continues to move in the same realizations~the interactions drawn
in white!, or all path memory is lost and the particle is transpor
into a different random realization~the interactions drawn in black!.
The relative probabilities for these two possibilities are governed
the memoryM associated with the process.
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A better method for obtainingseff andM is based on the
fact, that the physical parameter governing the effect of
obstacle bypassing phenomena is the dimensionless ratio
tween the correlation length and the average grain lengc

5Lcor/l̄51/(l̄seffA12M ). If c@1, the results of the
partial-Markovian process are similar to the results of the
process. Ifc!1, as is the case forM50, 0.25, 0.5, and 0.75
in Fig. 2~b!, the Markovian result is approached.

Partial Markovian problems having equalc ~but different
l̄ andM!, have the same asymptotic effective cross-sect
This statement was tested numerically in Fig. 4. We cons
ered a set of problems in whichl̄ takes values between 1.
and 75, andM takes the corresponding values that result
c51/seff (M50 for l̄51, M50.999 822 forl̄575, etc.!.
The effective cross sections of these partial Markovian pr
lems are plotted in Fig. 4. All lines have approximately t
same asymptotic effective cross section, in agreement w
our statement. This asymptotic value can be derived ana
cally, from the Markovian problemsM50 andl̄51 corre-
sponding to the uppermost line in Fig. 4. Further analyti
argumentation for the statement is given in the Appendix

We can thus obtain the asymptotic effective cross sec
for a partial markovian process, using a renormalization s
toward a Markovian description, keepingc ~and the effective
cross section! fixed:

seff~lC ,M !5seff~lCA12M ,0!. ~8!

Using the asymptotic Markovian effective cross section@10#

seff~M50!5s̄2
v2

ŝ
~9!

where ŝ5p0s11p1s011/lC , and v25p0p1(s02s1)2,
the following formula for the asymptotic effective cros
section of a partial Markovian description is obtained:

t
D
le

y

FIG. 4. Effective cross sections of equalc partial Markovian
processes. The different lines correspond to problems with the

erage grain sizesl̄51, 3, 5, 7.5, 10, 15, 20, 30, 50, and 75 and w
the partial memoriesM50, 8/9, 24/25, . . . , 0.9996, and 0.999822
respectively.
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seff~M !.s̄2
v2

p0s11p1s011/lCA12M
. ~10!

After inserting Eq.~7! into Eq.~10!, a quadratic equation fo
the effective cross-section is obtained, whose only phys
solution (seff.0) is

seff5
1
2 @~ s̄2ŝ !1A~ s̄2ŝ !214~ ŝs̄2v2!#. ~11!

This solution, in turn, can be inserted into Eq.~7! for the
estimation ofM. A somewhat similar spatial renormalizatio
with a consequent change in correlation parameters was
cently introduced in a study of diffusion processes in a fl
tuating 1D lattice@15#.

We now discuss some limits of the partial Markovia
model. In the limitls→0, the model approaches the Ma
kovian description, which should be valid in this limit. Im
portant observations can also be made in the continuum l
ls→`, for a stochastic media whose depthL is much larger
then the grain sizes. Equation~11! in this limit reproduces
the symmetric-effective-medium-approximation@16–18#,
first proposed by Bruggeman@16#, which is known to be in
good agreement with experimental data. Our formula in t
limit also satisfies the ‘‘phase-interchange’’ theorem@19#
~which is an exact result!, from which follows that when
p05p1 , the effective cross section isseff5As0s1. Finally,
we note that if the extreme valuesD51/s0,1/s1 were used,
the well-known Hashin-Shtrikman@20,21# upper and lower
bounds for diffusion in stochastic~but homogeneous a
large! media are obtained~in the 2D setting!. We note that
these bounds are analogs to a widely used composite-sp
assemblage model~also known as the Maxwell-Garne
model! @17,20#. Thus, the current model is consistent wi
the known diffusion models, exact results, and bounds.

Figure 5 presents the asymptotic effective cross sect
for a variety of problems. Plotted are the results of the
simulations, of the 1D and Markovian descriptions, and
the partial Markovian model. The parameters varied betw
the different problems are the average string length@Fig.
5~a!#, the cross-sections ratio@Fig. 5~b!#, and the volume
fraction filled with the relatively transparent material@Fig.
5~c!#. These parameters span the possible stochastic m
The asymptotic results corresponding to the sample probl
are enclosed in rectangles. For all the problems exami
the 2D effective cross section is lower than the 1D predict
for the asymptotic effective cross section (s̄), and higher
than its Markovian counterpart (s̄2v2/ŝ). The use of the
partial Markovian models reduces the discrepancy with
2D results to several percent.

IV. CONCLUSIONS

Transport in 2D, purely scattering stochastic media w
discussed. Numerical Monte Carlo transport simulations
2D purely scattering stochastic media were reported and u
to quantify the multidimensional effect of obstacle bypass
for multiple problems.

A partial Markovian description of transport in stochas
media was proposed for the modeling of the transport p
cess, reflecting the partial correlation between the paths
fore and after a 2D scattering interaction. The results of
al
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partial Markovian descriptions were found to be in go
agreement with the 2D simulation results, and were a
found to reproduce known models, bounds, and exact res
from the diffusion limit.

FIG. 5. Asymptotic effective cross sections as obtained from
2D simulations~enclosed in a circle! and as obtained from the mod
els, for a variety of stochastic media. Each subfigure shows res
corresponding to different values of a dimensionless parameter~a!
the grain thicknesslCs̄, ~b! the contrasts0 /s1 , and ~c! the vol-
ume fractionp1 .
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APPENDIX

In this appendix we present argumentation for the cla
that scaling the grain sizes in a partial Markovian transp
process, while keepingc ~the correlation length in terms o
the average grain size! fixed, does not affect the asymptot
effective cross-section. We first consider the problem
transport along a 1D realization~the c5` case!. The effec-
tive cross section of the medium is simply a weighted av
age of the cross sections of the different segments,seff
5(s0 Sli1s1Sl j)/L ( l i refers to segments of material 0,l j to
segments of material 1, andL is the medium length!. This
effective cross section is scale invariant, since multiply
l i , l j , andL by a factor does not change the effective cro
section.

We next consider the effect of a single no-memory sc
tering interaction: A particle lost its memory at some point
the interior of the media, whose optical depths from the
and right interfaces of the media are denoted byt1 andt2 ,
respectively. In the new realization, the optical depths fr
the boundaries are denoted byt3 andt4 , respectively. Such
a transition is illustrated in Fig. 6.

The probability that, without the transition, the partic
will reach the right interface of the medium~given that its
direction after the scattering interaction is not specified! can
be calculated as follows. The transmissionT(t) through a
purely scattering media of deptht, and the reflectionR(t)
from this media, satisfyT(t)512R(t)52/(21t). Sup-
pose that the particle starts moving to the right after
scattering interaction. The probability that it will reach th
right interface is

FIG. 6. A transition between two random realizations as a re
of a no-memory interaction. A particle located at an internal po
of a random realization, from which the optical distances to
medium’s left and right faces aret1 andt2 , respectively, passed t
a different random realization due to a no-memory~Markovian!
scattering interaction. In the new realization, the optical distance
the medium’s left and right faces are different (t3 andt4).
ia

n
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P15T~t2!1@R~t2!R~t1!#T~t2!1@R~t2!R~t1!#2T~t2!

1¯5
T~t2!

12R~t2!R~t1!
. ~A1!

Taking into account the fact that a particle that was reflec
from the right segment (t2) still has a chance of reaching th
right interface. This chance depends on the probability
being reflected by the left segment (t1). Analogously, if the
particle starts moving to the left, the probability of reachi
the right interface of the medium is

P25R~t1!T~t2!1@R~t1!R~t2!#R~t1!T~t2!

1@R~t2!R~t1!#2R~t1!T~t2!1¯5
R~t1!T~t2!

12R~t2!R~t1!
.

~A2!

Assuming isotropic scattering, the average probability
reaching the right interface isPold5(P11P2)/25(1
1t1)/(21t11t2). Accordingly, if the particle passes to
new realization~with t3 and t4), the probability changes
into Pnew5(11t3)/(21t31t4). Thus the transition
changed the probability of reaching the right interface by
factor

Pnew

Pold
5

11t3

2t31t4

21t11t2

11t1
. ~A3!

This factor is scale invariant under the conditio
t1 ,t2 ,t3 ,t4@1. We can thus conclude that transitions b
tween random realizations, occurring far from the mediu
faces, affect the transmission through the media~and hence
the effective cross-section that asymptotically satisfiesseff
'2/T) by a scale invariant factor.

When scaling the grain sizes in a partial Markovian tra
port process, the effective cross section remains fixed if
number of transitions between random realizations and t
relative locations are fixed too. Keepingc— the correlation
length in terms of the grain sizes—fixed secures that on
average, these conditions are satisfied.

We note that the conditiont1 ,t2 ,t3 ,t4@1 is not satisfied
by all interior points, even whenL→`. This is due to the
fact that the particle source is located on the left face of
medium, and not inside the medium. As it turns out, ho
ever, for those particles that have crossed the medium,
deviation from scale independence—in Eq.~A3!–cancels be-
tween transitions occurring close to both interfaces of
media.
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